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SUMMARY 
This paper introduces a vertex-centred finite volume method for compressible viscous Row incorporating 
a new shock detection procedure. The discretization is designed to  be robust and accurate on the highly 
stretched and curved meshes necessary for resolving turbulent boundary layers around the leading edge 
of an aerofoil. Details of the method are described for two-dimensional problems and the natural extension 
to three-dimensional multiblock meshes is discussed. The shock detection procedure is used to limit the 
range of the shock-capturing dissipation specifically to regions containing shocks. For transonic turbulent 
flow this is shown to improve the boundary layer representation significantly. 
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1. INTRODUCTION 

Vertex-centred finite volume methods have recently been much used for the solution of the 
compressible Euler and Navier-Stokes equations.'*2 On a two-dimensional structured mesh the 
basic methodology is that the conservation laws, by which these equations are represented, are 
integrated over a control volume whose vertices are the centroids of four neighbouring mesh 
cells. Unlike the cell vertex m e t h ~ d , ~ , ~  this results in a natural correspondence between equations 
and unknowns which facilitates the design of iterative solution procedures. However, the 
potential accuracy of the cell vertex approximation is very attractive; this is not realized in 
practise because the individual residuals are not set to zero, only a matrix-weighted average. In 
order for comparison, cell vertex results of the same test problems presented here are available 
in Reference 5. 

For highly stretched meshes with large curvature, which are necessary for the accurate 
simulation of turbulent boundary layers around an aerofoil, these vertex-centred methods suffer 
certain disadvantages. The most significant of these is that a given nodal unknown is not always 
located within the control volume which updates it. Furthermore, the union of control volumes 
may differ substantially from the region on which a solution is required.6 

This paper presents a modified vertex-centred scheme which is designed to rectify the 
disadvantages mentioned above. The control volume for this method is an octagon whose vertices 
are centroids and mid-side points of neighbouring mesh cells. Inviscid, viscous and artificial 
terms are all discretized consistently over this volume. This approach readily extends to 
multiblock grids and unstructured triangular meshes, for which similar methods have been used 
in Reference 7. The resulting algebraic system is solved efficiently using multigrid.' 

In addition, the paper introduces a new shock detection algorithm which is used to limit the 
range of application of shock-capturing artificial viscosity specifically to those regions where it 
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is required. Conventionally, artificial viscosity is typically controlled according to the magnitude 
of the pressure curvature,' which may lead to unnecessarily large amounts of artificial damping 
in boundary layers. For transonic turbulent flow the approach adopted here is shown to improve 
the boundary layer representation significantly. 

The paper begins with a description of the vertex-centred finite volume scheme. The 
discretization of inviscid, viscous and artificial diffusion terms is described in detail. In addition, 
the treatment of boundary conditions, including interior multiblock boundaries, is discussed. 
Section 3 presents a brief account of the multigrid solution procedure used to solve the discrete 
non-linear algebraic system. In Section 4 the shock detection algorithm is derived and discussed. 
Section 5 is devoted to a Fourier analysis of the two vertex-centred scheme discussed here. 
Finally, Section 6 presents numerical results for laminar flow past an NACA 0012 aerofoil and 
for turbulent flow past an RAE 2822 aerofoil. 

2. THE FINITE VOLUME DISCRETIZATION 

This paper addresses the numerical solution of systems of conservation laws of the general form 

where 

w = w(x), XLR c R2, (3) 

for some open domain 0. Note that the fluxes for this general form are functions not only of 
w but also of its gradient. For convenience the fluxes can be written as 

( 5  g) = (f(w), g'(w)) + (fV(W VW), gV(w, VW)) (4) 

where (f, g') and (fv, gv) represent the inviscid and viscous fluxes respectively. Of particular 
interest in this paper are the steady compressible Reynolds-averaged Navier-Stokes equation 
in two dimensions, x = (x, y), for which 

where p, u, v, p and E denote the density, the two Cartesian components of velocity, the pressure 
and the total energy respectively. The fluid is assumed to be a perfect gas, for which the equation 
of state is 

p = (Y - 1" - fp(u2 + v2)], (7) 
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with the speed of sound c given by c2 = y p / p ,  the enthalpy H = ( E  + p ) / p  and the entropy 
S = p / p y .  The deviatoric stress and heat conduction terms are given by 

where y, K ,  Re, Pr and M ,  denote the adiabatic constant, the coefficient of thermal conductivity, 
the Reynolds number, the Prandtl number and the freestream Mach number respectively. The 
laminar viscosity p 1  is assumed to vary with temperature according to Sutherland's law." The 
turbulent viscosity p1 is defined using the model of Baldwin and Lomax" with the slight 
modifications of Reference 12. Pr, denotes the turbulent Prandtl number. 

2. I .  A vertex-centred approach 

It is assumed that a set of non-overlapping convex quadrilaterals which tessellate R is given; 
this will be referred to as the primary mesh. In the vertex-centred methodology the unknowns 
are stored at the vertices { x j :  j = 1,2, .  . . , N }  of the primary mesh and a control volume s Z j  with 
boundary 6Rj is constructed around each vertex xi. 

Definining the residuals 

9 - n  ds, j = 1, 2 ,..., N ,  

where 6 is the measure of the control volume Rj and n is the outward unit normal to dQj, it 
is clear from the divergence theorem that r j  = o if w is a solution of (1). Finite volume schemes 
are discrete approximations to r j  which ensure conservation and convergence to a weak solution 
of equation (1). These properties are imperative if the solution admits shock waves. 

The construction of the control volume Rj around the vertex xj can be done in many ways. 
Two alternatives are discussed here. The is to define the control volume to the 
quadrilateral whose vertices are the centroids of the primary mesh cells with common vertex x j  
(Figure l(a)). An alternative approach is to define the control volume as the octagon whose 
vertices are the centroids and mid-edge points of the primary mesh cells surrounding xi  (Figure 
W)). 

The motivation behind the latter approach adopted here is to ensure 

(i) that the node x j  always lies within p j  
(ii) that the union of control volumes is identical to the union of primary mesh cells. 

This robust control volume is thought to be particularly important on the highly stretched 
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(a) (b) 

Figure 1. Alternative control volume for vertex x j  on an irregular mesh 

Figure 2. An alternative control volume for vertex xj on a stretched curved mesh 

and curved meshes necessary for resolving turbulent boundary layers around the leading edge 
of an aerofoil. Figure 2 exemplifies the alternative approaches on such meshes, showing in 
particular that the properties listed above do not hold for the method of Reference 2. 

In order to construct the approximation to rj in equation (13), first define 

as an approximation to the line integral of the flux along the southern line of the primary mesh 
cell c1 (Figure 3). Similarly define I a , W ,  I a , E  and as the approximate line integrals along the 
western, eastern and northern lines respectively, integrating from the mid-edge point to the 
centroid, with an approximate unit  normal n to be defined later. Thus the contribution of the 
contour integral required for, say, vertex x2 from the primary mesh cell tl in Figure 3 is 

C a . 2  = 1a.E - 1a.S (15) 

and similarly for C a , l ,  Ca,3 and Ca.4. The approximation to the residual equation (13) at a vertex 
xj on the primary mesh can therefore be expressed as 

where the integer p 2 4 represents the possible p cells surrounding vertex x j .  Although in this 
study body-fitted structured meshes are used, for which p = 4, it is envisaged that in general 
multiblock meshes will be necessary to resolve complex geometrical configurations. In this case 
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Figure 3. Detail of a primary cell a :  0, vertex on primary mesh; x , mid-edge point; 0, centroid of cell; A, north, 
south, east and west points 

many primary cells may have a common vertex at multiblock boundaries,” leading to p > 4. 
The authors believe it to be important for any discretization on a structured mesh to cope 
readily with this situation. By expressing the residual as a distribution of integrals based within 
the primary mesh, as in equation (16), no discretization problems are envisaged at multiblock 
boundaries. 

Figure 3 illustrates in some details a primary cell where the centroid is defined as 
A 

xg = c xi, 
i= 1 

where xi are the vertices of the primary cell u. Using a compass point notation, the southern 
point xs lies halfway between xo and the mid-edge point between x1 and x2. Thus 

Xs = 83x1 f 3x2 + X3 -t X4) 

z(x4 + x3) - xo = xo - 3x1 + x2), 

(18) 

and similarly for xE, xw and xN. It is worth noting that 

(19) 1 

so both the lengths and normals of the southern and northern lines are identical. This 
significantly reduces the complexity and work required to compute the line integrals within a 
primary cell, which is particularly important in three dimensions. It is thus worthwhile defining 
the primary-cell-based distances and unit normals 

(20) 

(21) 

SNs = alx3 + x4 - x1 - xz1, 

nNS = -~ ( 4 Y 3  + Y4 - Y l  - Y2), (x3 + x4 - x1 - X2NT 
1 

4sNS 

and similarly for SEW and nEw. 

quantities 
Numerical approximations to the integrals (16) are defined in terms of the discrete node-based 

w, z W(Xj), (22) 

vw, z VW(X,). (23) 
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To evaluate (14), the midpoint rule is used: 

Ia,s = F s 9  G ~ ~ N S S N S  + &sDs, (24) 

where F, z f(w,, Vw,), w, = w(x,), D, is an artificial diffusion operator acting on the discrete 
solution W and I, ,  is a acalar upwind coefficient. Details of Ds and AN, will be given in Section 
2.3. The flux Fs is evaluated in an analogous fashion to x, in (18) by 

where Fj = f(Wj, VW,) for vertex x, of the primary mesh. Similarly I.,N, and Ia ,w  can be 
defined. An alternative to (25) would be to average the states to evaluate W, and to derive the 
flux F, from this approximation. However, this would require approximately 4N2 computations 
of F over an N x N mesh, whereas using (25) requires only N 2 .  Since F, is a function of W, 
and VW,, the evaluation of Fj is an expensive operation compared with averaging and so i t  is 
cheaper to use the methodology adopted here. This approach is also preferred because of the 
additional smoothness of f compared with w in the neighbourhood of shocks. 

The integration rule adopted here results in a nine-point stencil for the advective terms, as 
does the method of Hall.' Other  worker^'^"^ have adopted the vertex-centred approach but 
only use a five-point stencil, which is less accurate on distorted meshes. 

2.2. Evaluation of the viscous terms 

In order to evaluate the viscous fluxes (6), VW, is required at the vertices x, of the primary 
mesh. This is approximated by means of the finite volume technique adopted above. Suppose 
4 is some continuous scalar quantity defined over R and approximated at the vertices x, by 0,. 
then V 0 ,  may be obtained from 

and the integral in (26) may be evaluated in an analogous fashion to (14) using nodal values 0,. 
The vector line integral along the southern line of primary cell a in Figure 3 is 

4,s = % ~ N & N S ~  (27) 

where @, is averaged as in equation (25). Line integrals la,N, la.E and lu.w are similarly defined. 
The contribution of the contour integral (26) from primary cell c( to, say, vertex x2 in Figure 3 
can be expressed as 

c a , 2  = L , E  - 4 , s  (28) 

and similarly for ca,, and c , .~ .  In an analogous fashion to (16) 

1 p  
VO, = - c ca*j v, a = l  

for p primary cells with common vertex x,. Hence equation (29) can be used componentwise to 
evaluate VW,. 

This leads to a 25-point stencil for diffusion at an interior vertex surrounded by four primary 
cells. Although this may at first appear unwieldy, because the contour integrals in (16) and (29) 
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are formed by distributing information from primary cells, i t  is not complicated or expensive to 
construct the residual. 

This discretization is consistent in the sense that the viscous and inviscid fluxes are balanced 
over the same control volume. In Reference 17 the viscous terms are balanced over the control 
volume adopted here; however, the inviscid balance is performed as in Reference 18 using the 
area-weighted cell vertex scheme first described in Reference 19. 

One advantage of the current treatment of viscous terms is that only one integration rule is 
required to evaluate the discrete residual (16), which will require less overhead in geometrical 
storage; this is thought to be especially important in three dimensions. 

2.3. Artijiciul dissipation 

The discretization outlined above leads to a central-difference-type approximation for advec- 
tion, which is renowned for its instability, and as mentioned above, the viscous discretization 
cannot be relied upon to stabilize the scheme, hence the need for artificial dissipation. The model 
used here is closely related to that of Reference 6, which in turn is an adaptation of the successful 
model attributed to Jameson et u / . ~  This consists of a blend of second and fourth differences. 

With reference to Figure 3, let 6: and 8," represent the undivided second-difference operators 
in the <- and tj-mesh-alinged co-ordinate directions respectively. The dissipation model is added 
as a perturbation to the flux integral as in equation (24). Assuming the <-co-ordinate lies along 
the southern edge of cell c( in Figure 3, then 

(30) D s - - T ( 2 . ' 3  (W, - W,) - d4.5)(8:W1 - 6,TW,), 

with 

I?  (32) T(4.<):=  max{(), E(4) - p.0 

where d2) and d4) are global constants, P j  represents the set of four adjacent primary vertices 
along the 5-co-ordinate line centered on the southern edge and 

Similarly K J  and thus D,, D, and D, can be defined. The differences and coefficients in D, are 
solely based along an edge and it is for notational purposes that they are associated with a 
primary cell. Clearly D, will be identical with D, for the cell whose northern edge is the southern 
edge of or, so the differences D are evaluated before the integrals (14). 

These edge-based differences are scaled by a cell-based upwind factor ANS in equation (24). 
This is based on the largest eigenvalue of the inviscid Jacobians A = 8 / a w  and B = dg'/dw 
rotated into a normal co-ordinate frame and integrated; thus 

(34) = (luO? uO)'nNSI -f cO)sNS. 

These artificial diffusion terms are the integral of undivided differences around the control 
volume. In smooth areas of flow the dominant terms are O(h3) and so will not effect the expected 
second-order accuracy of the discretization. In regions where the second pressure differences K $ ,  

and K J  become large, the resulting perturbation to the residual (16) is a second derivative of W 
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scaled by an O(h) quantity. This results in a first-order upwinded residual, ideal for capturing 
shocks. However, as will be apparent in Section 4, this is shown to be inadequate for the general 
case. 

On the high-aspect ratio grids required to resolve turbulent boundary layers, where 
ANS/AEw > lo3, the fourth-order dissipation terms will become highly anisotropic. This sig- 
nificantly reduces the stabilizing effect of the artificial dissipation and hence the speed of 
convergence of an iterative solver.” The technique adopted in Reference 21 is used to prevent 
this by redefining 

where x = 314. This limits any anisotropic effects caused by mesh stretching; the less drastic 
effect of mesh-aligned flow is also taken into account. 

2.4. Boundary conditions 

For a vertex xj on the boundary of the primary mesh the control volume used is shown in 
Figure 4. This ensures that the unions of the primary mesh cells and control volumes are identical. 
The same volume is also used for evaluating the gradients VW,. 

2.4.1. Solid wall. On a solid wall a no-slip condition is imposed by setting all the components 
of momentum in the residual to zero. In addition, the normal component of the vector VT is 
disregarded for the evaluation of the heat fluxes (11) and (12). Thus 

where i? = (hl, fiJT is the unit inward normal to the domain at vertex x,. This corresponds to 
a weak prescription of the adiabatic condition aTjdfi = 0. 

Figure 4. A control volume on the boundary; iij is the inward normnal at vertex x, 
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2.4.2. Free stream. On a freestream boundary the flow is assumed to be essentially inviscid 
and so the fluxes on the boundary are augmented to take account of incoming and outgoing 
inviscid characteristic information. A flux Fj on a freestream boundary is evaluated as 

Fj = f(IWj, VW,), (37)  

where VW, is evaluated as in the interior. W, is a non-linear combination of Wj and an infinity 
state derived from the vortex correction method described in Reference 22. This combination 
takes account of incoming and outgoing characteristic variables normal to  the domain, also 
described in Reference 22. This treatment of freestream boundaries imposes no explicit condition 
on the solution Wj. An implicit condition is imposed on the residual through the fluxes. 

2.4.3. Artlficiul dissipation. On a freestream or wall boundary the dissipation terms in the 
boundary co-ordinate, labelled 5 in Figure 4, are unchanged from an internal node as in equation 
(30). However, in the q-co-ordinate or normal co-ordinate 6;W, is set to zero on the boundary, 
with all other terms evaluated as in the interior case. This condition approximately imposes 
a2wj /dZq = 0 and d3wj/d3q = 0 on the fourth difference normal to the wall. There is theoretical 
evidence in Reference 23 which suggests that these are the correct conditions to impose. 

2.4.4. Znternul. Since the discretization is a distribution of primary-cell-based quantities, it is 
trivial to accumulate the residual across any internal boundaries. However, for the artificial 
dissipation terms evaluated along each edge a simple accumulation is not sufficient to avoid 
excessive communication between blocks. At present the second differences 6; and 6; are 
explicitly calculated across any internal boundaries that may lie in the 5 -  or q-direction. However, 
for a general multiblock mesh, where thousands of blocks may be needed to resolve the domain, 
it is envisaged that some approximation to the artificial diffusion terms may be necessary. 

With the above prescriptions a system of residuals has been defined with boundary conditions 
implicitly imposed. This is a useful feature for the successful implementation of multigrid. 

3. SOLUTION PROCEDURE 

The solution procedure adopted here is a FAS multigrid method first introduced by Brandt24 
and successfully applied to the Euler equations in Reference 8.  It uses a four-stage Runge-Kutta 
method as the smoothing procedure, a conservative area-weighted restriction and bilinear 
interpolation as the prolongation. This basic algorithm has been well documented in the 
literature.8*2s.26 Fo  r more general multigrid methods see Reference 27. 

The following strategy was used in order to ensure robustness and efficiency: 

(i) W-cycles with four or five pre- and post-smoothing iterations at every stage, 
(ii) a full multigrid (FMG) start-up procedure, 

(iii) overrelaxation of the Runge-Kutta time-stepping method with a Courant number of 2.6, 
(iv) modification of the coarse grid operator as described below. 

In Reference 28 the multigrid method is interpreted as an approximation cyclic reduction 
algorithm. This suggests that when solving advection-diffusion problems, the diffusion for the 
coarse grid operator should be increased for optimal convergence. This also seems sensible from 
a numerical viewpoint, since the coarse grids cannot resolve the boundary layer, which results 
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Figure 5. Plot of work done against residual reduction for single-and multigrid methods; RAE 2822 aerofoil test problem 

in instability. In order to mimic the algorithm described in Reference 28, the technique adopted 
in Reference 6 is used by redefining ti$ on the coarse grid to be 

where ~1 is defined similarly and eH is a global constant. In addition, the anisotropic parameter 
x in equation (35) is set to unity on coarse grids. Thus the maximum of ANS and iEW is used in 
each direction. 

A comparison between multigrid and single-grid convergence is shown in Figure 5 for the 
turbulent transonic flow past an RAE 2822 aerofoil; log(llRl12) is plotted against work units. A 
work unit is the cost of a single Runge-Kutta iteration on the finest grid. The oscillations at 
the beginning of the curves in Figure 5 are due to the FMG start-up. For a fair comparison the 
single-grid iteration solved the coarse grid problem to get the same initial guess. Clearly a fivefold 
speed-up is observed, but more importantly the multigrid convergence history is less oscillatory. 
The single-grid oscillations are thought to be due to the turbulence model. At a stricter tolerance 
the benefit of multigrid over a single-grid method is expected to be more significant. 

4. NORMAL SHOCK DETECTION 

The procedure for capturing shocks outlined in Section 2.3 is based on adding a second-order 
diffusion operator in regions where the second difference in pressure becomes large. This is 
thought to  be inadequate for transonic viscous calculations with shock-boundary layer interac- 
tion. The switch ti$ in equation (33) cannot distinguish between a shock and a large second 
pressure difference which may occur away from shocks in a boundary layer or indeed at the 
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leading edge of an aerofoil. In order to rectify this, a region of shocked flow is flagged before 
every Runge-Kutta time step. An alternative approach used in Reference 21 is to scale the 
pressure switches by the local Mach number. This is not as specific as the current approach where 
dissipation is only used in the shocked region. In the present work a robust and efficient technique 
has been developed for detecting this region where a normal shock lies. In accordance with the 
discretization philosophy, this is performed by flagging cells and so maintaining the flexibility 
of the algorithm to cope with geometrical difficulties. 

The detection procedure is based on careful examination of the M = 1 contour. Firstly a 
vertex-based flag S j  is defined over the mesh: 

S j  = +[l - sgn(1 - M j ) ] ,  (39) 

where M j  is the local Mach number at vertex x j .  Thus S j  = 1 defines all the vertices with 
supersonic states. The M = 1 contour passes through a given cell flj if 

and further processing is thus required. The states on either side of the M = 1 line within these 
cells are averaged as 

where U is the vector ( p ,  u, u, c)~, with a similar averaging for xL and xR. then along every edge 
of these cells the Mach number is linearly interpolated to find two points xA and xB where 
M = 1 (see Figure 6). It is possible to find four points within a quadrilateral where M = 1, in 
which case the first two are chosen; this possibility never occurred in any converged results. The 
unit normal to this contour can be expressed as 

Figure 6. Shock detection procedure 
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Figure 7. (a) Vector plot of normals to M = 1 contour and (b) detected shock region for RAE 2822 test case 

where bx,, = x, - x,. To ensure that n, is always the outward normal to the supersonic region, 

n, := sgn(6xRL - n,)n,. (43) 

A vector plot of these normals is illustrated in Figure 7(a) for a converged solution of turbulent 
transonic flow. It now remains to employ a simple test between UL and UR to differentiate 
between a shock and a sonic line. The cell-based switch S ,  is defined as 

(44) s, = +{sgn[uo '"s(PL - PR)I + 1) i l  - sgnII(M, - 1)WL - 1)1}> 
where 

and u = (u, u ) ~ .  The primary-cell-based switch S,  in (44) is zero away from the shock and unity 
if the shock passes through primary cell a. This switch is based on the jump in pressure normal 
to the M = 1 contour, in conjunction with the sign on the velocity through this contour. Since 
the shocks are still to be captured over perhaps four intervals, any primary cells within a two-cell 
radius of an S,  = 1 cell are also flagged. This region is illustrated in Figure 7(b), which clearly 
shows where the shock and boundary layer meet. One of the advantages of this procedure is 
its robustness; only the shock is detected and the sonic line between the supersonic region and 
the boundary layer will never be flagged, since the Mach numbers resolved normal to the M = 1 
contour will always be very much less than unity. This cannot be said of other detection 
 procedure^;^^.^' however, these methods can detect oblique shocks, which will not be found 
with the procedure adopted here. 

To implement this algorithm, the edge-based shock-capturing coefficients ~5 and K Y  are scaled 
by the S ,  for the neighbouring cells a. This ensures that second-order dissipation will only come 
into effect in the shocked region. 

Although at first sight this test may appear expensive, after the initial test (40) has been 
performed over all primary cells, work is only required on a small subset of the domain, i.e. on 
the cells which contain the M = 1 contour. This detection procedure is only performed on the 
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finest grid, S ,  being set to unity for all a on coarse grids. The computational overhead has been 
found to be negligible, as has the effect on the overall convergence history. 

5. FOURIER ANALYSIS 

For the vertex-centred methodology the control volume on a non-uniform mesh is not unique 
(see Figure 2). However, on a uniform mesh it is clear that the two approaches discussed lead 
to identical volumes. This section presents a Fourier analysis for two discretizations on a uniform 
mesh with step length h. Since this work is directed towards external aerodynamics problems, 
where the majority of the flow is essentially inviscid, linear advection is taken as the model 
problem, i.e. 

a.Vu = 0, (46) 

The advective discretization of Hall' averages states to the centroids and uses the trapezium 
where a = (a, b)T is some constant velocity field. 

quadrature rule around the control volume to obtain the nine-point stencil 

- (a  - b) 2b (a  + b) 

where U is an approximation to w. The Fourier symbol S(8)  is defined by 

L exp - 8 . x  = s(8) exp ~ e S x  , 8 =(e l ,  e,)TE(-na, XI*, (: ) (: ) 

(47) 

where L is the discrete operator and x are the co-ordinates of the mesh. For the discretization 
in equation (47) this is given by 

1 
S(8) = - [2a sin 8, + 2b sin 8, + (a + b) sin(8, + 0,) + (a - b) sin(8, - O,)]. (49) 4h 

This represents the effect of the operator (47) on the various Fourier modes in (48). Modes which 
lie in the null space of the operator, corresponding to S(0)  = 0, are of particular interest. The 
multigrid procedure outlined in Section 3 is reliant on non-zero vlaues of this symbol for all 
high-frequency modes. The symbol vanishes not only at 8 = (0, O)T, which is the consistency 
condition, but also at 

Thus no high-frequency damping is obtained and hence this method is solely reliant on artificial 
dissipation. 

The present discretization for advection uses a composite midpoint rule along each edge of 
the control volume, giving the nine-point stencil 

0 6a U, 1 - (a  - b )  6b (a + b) 

b) -66 ( a -  b) 
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( a )  ( 0 )  

Figure 8. Comparison of advcctive symbols of (a) Hall' and (b) present scheme 

with symbol 

1 
S(0) = ~~~ [6a sin 8, + 6h sin 8, + (a + b) sin(8, + 0,) + (a - b) sin(0, - O , ) ] .  (52) 8h 

The symbol vanishes for 8 = (0, O)T and in addition for 

= (TO), (o,n), (n, XI. (53) 

In this case only the chequer-board and anisotropic modes lie in the null space. 
Contour plots of the two symbols examined are presented in Figure 8 for a = (2, 1) which 

clearly illustrate the spectral advantages of the present scheme. However, artificial dissipation 
is still essential for the damping of the remaining modes. 

The symbol of the present scheme has similar high-frequency damping to that of the five-point 
scheme in Reference 14. For the test problem in (46) this results in a simple central difference 
scheme which is not accurate on distoreted meshes and so is not discussed any further. 

6. NUMERICAL RESULTS 

In order to evaluate the accuracy of the algorithm, two widely documented test problems are 
examined in detail. The first is laminar flow past an NACA 0012 aerofoil at zero angle of attack 
(a = 0), Re = 5000 and M ,  = 0.5. The second is the more physical turbulent transonic flow 
past an RAE 2822 aerofoil at a = 2.79, M ,  = 0.73 and Re = 6.5 x lo6. 

6.1. Laminarjlow past an NACA 0012 aerofoil 

This test case is ideal for the evaluation of the performance of the method since it is a laminar, 
totally subsonic, non-lifting case. Hence spurious effects due to turbulence modelling, shocks 
and far-field boundary conditions cannot pollute the solution. In addition, results for this test 
case are abundant in the literature (see Table 11). Here mesh refinement and artificial dissipation 
studies are presented along with a budget balance of inviscid, viscous and artificial dissipation 
fluxes. 
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Table 1. 
mesh spacing at the leading edge 

Details of NACA 0012 meshes; AS is the normal 

Size Points on aerofoil AS Far field 

513 x 65 383 2 x 10chords 
193 x 49 95 5 x lo-' 10 chords 
129 x 33 65 4 x 10 chords 

The three meshes used in the refinement study were also used in a similar study in Reference 
3 and are outlined in Table I. Figure 9 and 10 shows details of the grid resolution at the leading 
and trailing edges of these meshes respectively. Clearly the 513 x 65 mesh is much finer than 
the other meshes and is used to  give a baseline solution in order to assess the performance of 
the method on the remaining grids. 

Figure 11 shows a detailed comparison of the skin friction coefficient C, for the three meshes 
at the leading edge and the separation point, where C, changes sign. Around the leading edge 
(Figure lI(a)) the comparison is good, whereas at the separation point (Figure ll(b)) the 
agreement is remarkable. This is especially true since the body-wise spacing of the 129 x 33 
mesh at the separation point is poor. Figure 12 shows the normal and tangential velocity 
components resolved on a line normal to the aerofoil at 90% chord. This line clearly cuts through 
the recirculation region (Figure 12(a)) and is thus thought to be highly sensitive region. Again 

( a )  (1)) i r)  

Figure 9. Primary mesh resolution at leading edge for NACA 0012: (a) 129 x 33: (b) 193 x 49; (c) 513 x 65 

I 1 I l l 1 7 1  I I 

- 

I 

( a )  (b) 

Figure 10. Mesh resolutin at trailing edge for NACA 0012: (a) 129 x 33; (b) 193 x 49; (c) 513 x 65 
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Figure 11. Skin friction coefficients at (a) leading edge and (b) separation point for N A C A  0012 test case on meshes: 
A, 129 x 33; 0, 193 x 49; 0, 513 x 65 
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Figure 12. Interpolated (a) tangential and (b) normal velocity profiles a t  95% chord through separated region for 
subsonic N A C A  0012 test case on meshes: A, 129 x 33; 0, 193 x 49; 0, 513 x 65 
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Table 11. Comparison with other authors for NACA 0012 test case 

Author Grid 

Present 
Present 
Present 
Reference 5 
Reference 5 
Reference 5 
Reference 7 
Reference 31 
Reference 25 

513 x 65 
193 x 49 
129 x 33 
513 x 65 
193 x 49 
129 x 33 
320 x 64 
320 x 64 
512 x 128 

0.0226 
0.0224 
0.0225 
0.0226 
0.0226 
0.0230 
0.0229 
0.02 19 
0.0224 

G 

0.0328 
0.0329 
0.0328 
0.0328 
0.0326 
0.0322 
0.0332 
0.0337 
0.0330 

Separation point 
(% chord) 

81.5 
81.6 
81.3 
81.9 
81.9 
80.6 
81.4 
81.9 
81.4 

good agreement is observed. Table I1 presents a comparison of the inviscid drag coefficient Ch 
and the viscous drag coefficient Cg for the three meshes and the results of other workers; good 
agreement is observed. These comparisons with the baseline solution illustrate that highly 
accurate solutions may be obtained on relatively coarse meshes using the current method. 

Table 111 shows the dependence of the solution on d4), the global fourth-order artificial 
dissipation coefficient. This variance is acceptable, with little effect on the work units required 
to obtain these solutions to a fixed tolerance. For this test case, where the flow field is totally 
subsonic, the global constant d2) governing the shock-capturing dissipation is irrelevant, since 
the shock detection algorithm ensures that no second-order dissipation is added. 

Figure 13 shows the x-momentum flux balance of the inviscid, viscous and artificial dissipation 
contributions to residuals in the boundary layer. Away from the aerofoil the viscous flux is 
essentially zero, so if these plots were extended to the freestream, a balance of inviscid and 
artificial dissipation terms would be observed. This is the case everywhere for a Euler calculation. 
It is for this reason that care must be taken in interpreting these plots. Clearly in Figure 13(a) 
the artificial dissipation terms are negligible near the wall. It is essentially only through the 
boundary layer edge that these fluxes become comparable with the physical terms. Figure 13(b) 
shows the same balance in the body co-ordinate at about 1 % chord away from the aerofoil. At 
the leading edge s = 0 the flow is essentially inviscid and the boundary layer has not developed, 
so the viscous fluxes are negligible. Away from the leading edge the boundary layer has developed 
and the balance shows the artificial dissipation terms to be negligible. However, as in Figure 
13(a), the artificial dissipation fluxes become apparent when passing from a viscous to an inviscid 
region. This behaviour is typical. 

Table 111. Effect of fourth-order dissipation for NACA 0012 test case 
~~ 

&4) GI CL Separation point Work units 
(% chord) 

1/64 0.0223 0.0334 82.0 3744 
1/128 0.0224 0.0329 81-6 4359 
11256 0.0224 0.0326 81.4 4995 
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Figure 13. Equation budget of x-momentum of residual--n, inviscid; 0, viscous; A, artificial dissipation-for subsonic 
NACA0012 test case, 193 x 49 mesh, (a) through boundary layer a t  50% chord and (b) 1% chord away from aerofoil 

6.2. Turbulent flow past an RAE 2822 aerofoil 

This test case is again well documented in the literature and is chosen to illustrate the capability 
of the method applied to a physically realistic problem and to demonstrate the shock detection 
algorithm. The two meshes GRID 1 and GRID 5 used are summarized in Table IV. These were 
used as part of the European validation exercise EUROVAL.32 GRID 1 is thought to be of 
poor quality in comparison with GRID 5, with too few points in the inviscid region. Both grids 
have similar near-wall resolution. Figure 14 shows in some detail the leading edge grid spacing. 
The normal to the wall co-ordinate was scaled by a factor of 15 to enable individual cells on 
the body to be observed (Figure 14(b)). It is in this region that aspect ratios are greater than 
1000 and with the high curvature the phenomenon illustrated in Figure 2 occurs. Table V presents 
a comparison of lift and drag coefficient between the two grids used here and the results of other 
workers. Very good agreement is observed for the viscous drag Cg, but there is considerable 
spread in the inviscid drag C; and the lift coefficient CL. 

Of particular interest is the effect of the shock detection algorithm on the solution. Clearly 

Table 1V. Details of RAE 2822 meshes; AS is the normal mesh spacing at 
the leading edge 
~ 

Name Size Points on aerofoil AS Far field 

GRID 1 256 x 64 201 4 x 10 chords 
GRID 5 272 x 96 201 4 x 30 chords 
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(a) (b)  

Figure 14. (a) View of RAE 1822 (257 x 65) mesh around leading edge. (b) A closer view with the normal to the wall 
co-ordinate scaled by I5 

Table V. Comparison with other authors for RAE 2822 test case; SD 
denotes with shock detection 

Author Grid CL Cb c:: C D  

Present 
Present + SD 
Present 
Present + SD 
Reference 6 
Reference 12 
Reference 33 
Reference 34 
Reference 32 

273 x 97 
273 x 97 
256 x 65 
256 x 65 
256 x 65 
256 x 65 
256 x 65 
248 x 51 
273 x 97 

0.865 
0.875 
0.844 
0.870 
0.848 
0.842 
0.829 
0.824 
0.837 

0.0131 
0.0133 
0.01 43 
0.0132 
0.0141 
00121 
0.0 124 
0.0 128 
0.01 11 

0.0056 
0.0058 
0.0055 
0.0056 
0.0053 
0.0055 
0.005 1 
0.0050 
0.0056 

0.0 199 
0.0190 
0.0198 
0.0188 
0-0 194 
0.0175 
0.0175 
0.0178 
0.0167 

from Table V the most significant effect is on the lift coefficient C,. Figure 15 shows plots of 
pressure coefficient and skin friction coefficient on the upper and lower surfaces in the shocked 
region for the two grids. A clear improvement is observed, with the shock detection algorithm 
giving almost grid-independent results. Without the shock detection the second-order dissipation 
is smearing the steep layers within the boundary layer; this is totally unphysical. 

The results presented here give almost as accurate answers as the cell vertex results in Reference 
5; this, in combination with the greater robustness of the scheme, makes this approach a 
worthwhile alternative. The authors believe that there is a strong argument for further develop- 
ment of both types of scheme. 
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Figure 15. Comparison of (a) pressure coefficient and (b) skin friction around shocked region for RAE 2822 test case: 
0, 257 x 65; 0, 257 x 65 with shock detection; A, 273 x 97; +, 273 x 97 with shock detection 

7. CONCLUSIONS 

A consistent vertex-centred finite volume method has been presented which coped with the highly 
stretched and curved meshes required to resolve turbulent boundary layers around the leading 
edge of an aerofoil. In addition, the discretization will readily extend to general multiblock 
meshes in two and three dimensions. 

Accurate answers were obtained on coarse meshes for both laminar and turbulent flow, the 
latter being achieved by the application of robust and efficient shock detection procedure which 
limits the areas where shock-capturing dissipation is applied. 
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